PRIMARY SIDE CONTROL SMPS WITH BUILT-IN MOSFET

DESCRIPTION

SD6854 is a primary side control PSR SMPS with built-in MOSFET. It features programmable cable drop compensation function, PFM technology and CV/CC control loop with high reliability and average efficiency.

With SD6854, opto-couple and Y capacitor, secondary feedback control, loop compensation circuit can be eliminated for reducing cost.

In a certain output voltage range, output voltage can be set through feedback resistor, and output current also can be set through peak current sense resistor. Setting cable drop compensation and peak current compensation are also available for optimized output voltage/current regulation.

FEATURES

- * Built-in high voltage MOSFET
- * Primary side control
- * Low start-up current
- * Leading edge blanking
- * Pulse-Frequency Modulation(PFM)
- * Overvoltage protection
- * Undervoltage lockout
- * Over temperature protection
- * Cycle by cycle current limiting
- * Open loop protection
- * Cable drop compensation
- * Peak current compensation

ORDERING INFORMATION

APPLICATIONS

- * Mobile charger
- * Adaptor with small power
- * charger for MP3 and other portable apparatus
- * Stand-by power supply

	*			
Part No.	Package	Marking	Material	Packing
SD6854	DIP-8A-300-2.54 SD6854		Pb free	Tube
SD6854G	DIP-8A-300-2.54	SD6854G	Pb free	Tube

SD6854_Datesheet

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING (unless otherwise specified, Tamb=25°C)

Characteristics	Symbol	Rating	Unit
Supply voltage	Vcc	-0.3~28	V
Internal voltage reference	V _{REF5V}	-0.3~5.5	V
Input voltage on pin FB	V _{FB}	-20~18	V
Input voltage on other pins	V _{IN}	-0.3~ 5.3	V
Input current	I _{IN}	-10~10	mA
Operating junction temperature	TJ	+160	°C
Operating temperature range	T _{amb}	-20~ +85	°C
Storage temperature range	T _{STG}	-40~+125	°C
ESD(body mode)	ESD	2500	V

MOSFET ELECTRICAL CHARACTERISTICS (unless otherwise specified, T_{amb}=25°C)

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	B _{VDSS}	V _{GS} =0V, Ι _D =50μΑ	650			V
Static Drain-source on-state resistance	R _{DS(ON)}	V _{GS} =10V, I _D =1.25A		3.8	4.8	Ω
Forward transconductance	G _{fs}	V _{DS} =50V, I _D =0.5A	1.5			S

SD6854_Datesheet

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Input Capacitance	C _{iss}			450		
Output Capacitance	Coss			35		-
Reverse Transfer Capacitance	C _{rss}	V _{GS} =0V, V _{DS} =25V, f=1MHz		8.4		pF
Turn-on Delay Time	t _{d(ON)}			12.6		
Rise Time	tr			31		0
Turn-off Delay Time	$t_{d(OFF)}$	V _{DS} =0.5B _{VDSS} , I _D =25mA		17.6	-	nS
Fall time	t _f			20		

ELECTRICAL CHARACTERISTICS (unless otherwise specified, V_{CC}=18V, T_{amb}=25°C)

CharacteristicsSymbolTest conditionsMin.Typ.Max.UnitSupply voltageStart-up current $ s_{T}$ $V_{cc} = 14V$ 310 μ AQuiescent current $ o_{P}$ 30450 μ AStart threshold voltage V_{ST} 1374.516 V Shutdown threshold voltage V_{SF} 5.56.57.5 V Reference power supply V_{SEFFV} 4.755.05.25 V VCC Overvoltage protection V_{CCV} 242526 V Feedback205080mVFB Overvoltage protection V_{ENVP} 4.85.05.2 V Loop open voltage V_{ENVP} 2.02.02.02.0 V Constant voltage threshold V_{CV} 2.02.02.02.0 V Oppanditic characteristic T_{CVmn} 1.02.8 μ SCV loop control off time T_{CVm} $V_{FP} \vee V_{CV}$ +0.2V12182.4mSMaximum duty of constant-voltage frequency rangefs1002.002.02.02.02.0Over voltage recover time T_{OVP} I_{FC} =05.007.009.00mVPFM frequency rangefs I_{PC} =1 μ A2.22.52.8mAOver voltage recover time T_{OVP} I_{FC} =1 μ A2.22.02.02.01.0 <t< th=""><th colspan="6"></th></t<>							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Supply voltage						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Start-up current	I _{ST}	V _{CC} =14V	-	3	10	μA
Shutdown threshold voltage VSP 5.5 6.5 7.5 V Reference power supply VREF6V 4.75 5.0 5.25 V VCC Overvoltage protection VCCOVP 24 25 26 V Feedback 20 50 80 mV Enable turn on voltage VEN 20 50 80 mV FB Overvoltage protection VFBOVP 4.8 5.0 5.2 V Loop open voltage VEN 20 50 80 mV Constant voltage threshold VCV 2.0 2.1 2.2 V Dynamitic characteristic U 2.0 2.1 2.2 V Quanture duty of constant-voltage loop T_CVmax VFB > V_CV+0.2V 12 18 24 mS Maximum duty of constant-voltage recover time T_OVP 12 18 24 mS Over voltage recover time T_OVP 12 18 24 mS Current Limit	Quiescent current	I _{OP}			300	450	μA
Reference power supply V_{REFSV} 4.75 5.0 5.25 V VCC Overvoltage protection V_{CCOVP} 24 25 26 V Feedback 20 50 80 mV FB Overvoltage protection V_{EBOVP} 4.8 5.0 5.2 V Loop open voltage V_{ELANK} -1.4 -1.2 -1.0 V Constant voltage threshold V_{CV} 2.0 2.1 2.2 V Dynamitic characteristic	Start threshold voltage	V _{ST}		13	14.5	16	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shutdown threshold voltage	V _{SP}		5.5	6.5	7.5	V
$\begin{array}{ c c c c c c } \hline Feedback \\ \hline Feedback \\ \hline Enable turn on voltage V_{EN} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Reference power supply	V _{REF5V}		4.75	5.0	5.25	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VCC Overvoltage protection	V _{CCOVP}		24	25	26	V
$\begin{array}{c c c c c c c c c c c c c } FB Overvoltage protection & V_{FBOVP} & 4.8 & 5.0 & 5.2 & V \\ \hline Loop open voltage & V_{BLANK} & -1.4 & -1.2 & -1.0 & V \\ \hline Constant voltage threshold & V_{CV} & 2.0 & 2.1 & 2.2 & V \\ \hline Dynamitic characteristic & & & & & & & & & & & & & & & & & & &$	Feedback						
$ \begin{array}{c c c c c c c c } Loop open voltage & V_{BLANK} & -1.4 & -1.2 & -1.0 & V \\ \hline Constant voltage threshold & V_{CV} & 2.0 & 2.1 & 2.2 & V \\ \hline Dynamitic characteristic & & & & & & & & & & & & & \\ \hline Leading-edge blanking time & T_{LEB} & 0.3 & 0.6 & 0.9 & \muS \\ \hline CV loop control off time & T_{CV/nin} & 1.0 & & 2.8 & \muS \\ \hline T_{CV/nin} & V_{FB} > V_{CV} + 0.2V & 12 & 18 & 24 & mS \\ \hline Maximum duty of constant-voltage loop & f_S & 100 & & 200k & Hz \\ \hline Over voltage recover time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline D_{Smax} & D_{Smax} & 50 & 57 & 64 & \% \\ \hline PFM frequency range & f_S & 100 & & 200k & Hz \\ \hline Over voltage recover time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline Current Limit & & & & & & & & \\ \hline Peak current detecting threshold voltage & V_{PK} & I_{PCC} = 0 & 500 & 700 & 900 & mV \\ \hline Peak current compensation & \DeltaI_{PK} & I_{PCC} = 10K, D_S = 50\% & 180 & 200 & 220 & mV \\ \hline Over temperature Protection & T_{Sd} & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & & & & & & & & \\ \hline Over temperature detection & T_{Sd} & & & & & & & & & & & & & & $	Enable turn on voltage	V _{EN}		20	50	80	mV
$\begin{array}{c c c c c c } \mbox{Constant voltage threshold} & V_{CV} & 2.0 & 2.1 & 2.2 & V \\ \hline \mbox{Dynamitic characteristic} & & & & & & & & & & & & & & & & & & &$	FB Overvoltage protection	VFBOVP		4.8	5.0	5.2	V
Dynamitic characteristicLeading-edge blanking time T_{LEB} 0.30.60.9 μ SCV loop control off time T_{CVmax} T_{CVmax} $V_{FB} > V_{CV} + 0.2V$ 121824mSMaximum duty of constant- voltage loop D_{Smax} D_{Smax} D_{Smax} 50 57 64 $\%$ PFM frequency range f_S I_{CV} 100 $$ $200k$ Hz Over voltage recover time T_{OVP} $I_{CC}=0$ 100 $$ $200k$ Hz Peak current detecting threshold voltage M_{PK} $P_{PC}=0$ 500 700 900 mV Peak current compensation ΔI_{PK} $I_{PCC}=0$ 180 200 220 mV Cable drop compensation voltage M_{CDC} $R_{CDC}=100K$, $D_S=50\%$ 180 200 220 mV Over temperature Protector T_{Sd} I_{Sd} I_{Sd} I_{Sd} I_{Sd} I_{Sd} I_{Sd} I_{Sd}	Loop open voltage			-1.4	-1.2	-1.0	V
$\begin{tabular}{ c c c c } \hline $Leading-edge blanking time $$T_{LEB$}$ & 0.3 & 0.6 & 0.9 & μS$ \\ \hline $T_{CV\ loop\ control\ off\ time $$T_{CV\ max}$ $$T_{CV\ max}$ $$V_{FB} > V_{CV} + 0.2V$ & 12 & 18 & 24 & mS$ \\ \hline $T_{CV\ max}$ $$V_{FB} > V_{CV} + 0.2V$ & 12 & 18 & 24 & mS$ \\ \hline $Maximum\ duty\ of\ constant-voltage\ loop $$ $$D_{Smax}$ $$D_$	Constant voltage threshold	V _{cv}		2.0	2.1	2.2	V
$\begin{tabular}{ c c c c c } \hline T_{CVmin} & T_{CVmin} & 1.0 & & 2.8 & \mu S \\ \hline T_{CVmax} & V_{FB} > V_{CV} + 0.2V & 12 & 18 & 24 & mS \\ \hline Maximum duty of constant-voltage loop & D_{Smax} & D_{Smax} & 50 & 57 & 64 & \% \\ \hline PFM frequency range & f_S & 100 & & 200k & Hz \\ \hline Over voltage recover time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline Current Limit & & & & & & & & & & & & & & & & & & &$	Dynamitic characteristic						
$\begin{array}{c c c c c c c } \hline CV \ loop \ control \ off \ time & T_{CVmax} & V_{FB} > V_{CV} + 0.2V & 12 & 18 & 24 & mS \\ \hline Maximum \ duty \ of \ constant-voltage \ loop & D_{Smax} & D_{Smax} & 50 & 57 & 64 & \% \\ \hline D_{Smax} & D_{Smax} & 100 & & 200k & Hz \\ \hline D_{FM} \ frequency \ range & f_S & 100 & & 200k & Hz \\ \hline Over \ voltage \ recover \ time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline Over \ voltage \ recover \ time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline D_{Ver} \ voltage \ recover \ time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline D_{Ver} \ voltage \ recover \ time & V_{PK} & I_{PCC}=0 & 500 & 700 & 900 & mV \\ \hline Peak \ current \ compensation & \Delta I_{PK} & I_{PCC}=-1\muA & 2.2 & 2.5 & 2.8 & mA \\ \hline Cable \ drop \ compensation & \Delta I_{PK} & I_{PCC}=100K, \ D_S=50\% & 180 & 200 & 220 & mV \\ \hline Over \ Temperature \ Protection & T_{sd} & Iecc \ Temperature \ detection & T_{sd} & Iecc \ Temperature \ Temperature \ detection & T_{sd} & Iecc \ Temperature \ detection & T_{sd} & Iecc \ Temperature \ Temperature \ Temperature \ detection & T_{sd} & Iecc \ Temperature \ Tempe$	Leading-edge blanking time	TLEB		0.3	0.6	0.9	μS
$\begin{array}{ c c c c c c c c } \hline T_{CVmax} & V_{FB} > V_{CV} + 0.2V & 12 & 18 & 24 & mS \\ \hline Maximum duty of constant-voltage loop & D_{Smax} & D_{Smax} & 50 & 57 & 64 & \% \\ \hline PFM frequency range & f_S & 100 & & 200k & Hz \\ \hline Over voltage recover time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline Over voltage recover time & T_{OVP} & 12 & 18 & 24 & mS \\ \hline Current Limit & V_{PK} & I_{PCC} = 0 & 500 & 700 & 900 & mV \\ \hline Peak current detecting threshold voltage & V_{PK} & I_{PCC} = -1 \mu A & 2.2 & 2.5 & 2.8 & mA \\ \hline Cable drop compensation & \Delta I_{PK} & I_{PCC} = -1 \mu A & 2.2 & 2.5 & 2.8 & mA \\ \hline Cable drop compensation & V_{CDC} & R_{CDC} = 100K, D_S = 50\% & 180 & 200 & 220 & mV \\ \hline Over Temperature Protection & T_{sd} & 125 & 140 & & ^{\circ}C \\ \hline Over temperature detection & T_{sd} & 125 & 140 & & 0 \\ \hline \end{array}$	CV/ loop control off time	T _{CVmin}		1.0		2.8	μS
voltage loop D _{Smax} 50 57 64 % PFM frequency range f_S 100 200k Hz Over voltage recover time T_{OVP} 12 18 24 mS Current Limit T_{OVP} $P_{PCC}=0$ 500 700 900 mV Peak current detecting threshold voltage V_{PK} $I_{PCC}=0$ 500 700 900 mV Peak current compensation ΔI_{PK} $I_{PCC}=-1\muA$ 2.2 2.5 2.8 mA Cable drop compensation voltage V_{CDC} $R_{CDC}=100K$, $D_S=50\%$ 180 200 220 mV Over Temperature Protection T_{sd} Integent of the temperature detection T_sd 125 140 °C		T _{CVmax}	$V_{FB} > V_{CV} + 0.2V$	12	18	24	mS
$\begin{tabular}{ c c c c c } \hline V voltage recover time T_{OVP} & I 12 & $18 $ 24 $ mS$ \\ \hline $Current Limit$ & V_{PK} $I_{PCC}=0$ & 500 700 900 mV \\ \hline $Peak current detecting$ V_{PK} $I_{PCC}=0$ & 2.2 2.5 2.8 mA \\ \hline $Peak current compensation$ ΔI_{PK} $I_{PCC}=-1\mu A$ & 2.2 2.5 2.8 mA \\ \hline $Cable drop compensation$ ΔI_{PK} $I_{PCC}=-1\mu A$ & 2.2 2.5 2.8 mA \\ \hline $Cable drop compensation$ V_{CDC} $R_{CDC}=100K$, $D_{S}=50\%$ 180 200 200 220 mV \\ \hline $Over Temperature Protection$ T_{sd} I $Lemperature V V U $Table drop V U V U V U U U U $U$$		D _{Smax}		50	57	64	%
$\begin{tabular}{ c c c c } \hline Current Limit & & & & & & & & & & & & & & & & & & &$	PFM frequency range	fs		100		200k	Hz
$\begin{array}{c c c c c c c c } \hline Peak current detecting \\ threshold voltage \\ \hline Peak current compensation \\ \hline \Delta l_{PK} & l_{PCC}=0 & 500 & 700 & 900 & mV \\ \hline Peak current compensation \\ \hline \Delta l_{PK} & l_{PCC}=-1\muA & 2.2 & 2.5 & 2.8 & mA \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Over voltage recover time	T _{OVP}		12	18	24	mS
VPKIPCC=0500700900mVPeak current compensation ΔI_{PK} IPCC=-1 μ A2.22.52.8mACable drop compensation voltageVCDC V_{CDC} R_{CDC} =100K, Ds=50%180200220mVOver Temperature ProtectionOver temperature detection T_{sd} I_{Sd} 125140°C	Current Limit						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Peak current detecting	V	0	500	700	000	m\/
Cable drop compensationCable drop compensation voltage V_{CDC} R_{CDC} =100K, D_{S} =50%180200220mVOver Temperature ProtectionOver temperature detectionT _{sd} 125140	threshold voltage	V PK	IPCC-U	500	700	900	IIIV
Cable drop compensation voltageV CDCR CDC=100K, D S=50%180200220mVOver Temperature ProtectionOver temperature detectionT sd125140°C	Peak current compensation	ΔI_{PK}	I _{PCC} =-1μA	2.2	2.5	2.8	mA
voltage V_{CDC} $R_{CDC}=100K$, $D_S=50\%$ 180200220mVOver Temperature ProtectionOver temperature detection T_{sd} 125140°C	Cable drop compensation						
Over Temperature Protection Over temperature detection T _{sd} 125 140 °C		V _{CDC}	R _{CDC} =100K, D _S =50%	180	200	220	mV
Over temperature detection T _{sd} 125 140 °C							
				125	140		°C
		T _{sdhys}				55	

SD6854_Datesheet

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Function description
1	ISEN	Ι	Peak current sense pin
2	GND	_	Ground
3	VCC	_	Power supply
4	FB	I	Feedback voltage input pin
5	CDC		Cable drop compensation resistor connect pin
6	PCC	I	peak current compensation resistor connect pin
7			No pin
8	Drain	0	Drain pin of high voltage MOSFET

FUNCTION DESCRIPTION

SD6854 is controller designed for off-line SMPS. It features built-in MOSFET, cable drop compensation and peak current compensation. CV/CC is obtained through output voltage/current controlled through detecting feedback voltage of auxiliary winding and peak current of primary winding.

The whole operating period consists of peak current detection and feedback voltage detection.

When MOSFET is on, primary current is detected by sense resistor and voltage at pin FB is negative, load is powered by output capacitor and output voltage V_0 decreases. When primary current exceeds the limit, MOSFET is off and voltage at pin FB is detected. Output capacitor and load are powered by secondary current and V_0 increases. Transistor is on again after stop for T_{CV} and hold for T_{CC} . And then, it comes to peak current detect again.

1. Start-up and under voltage lockout

At the beginning, the capacitor connected to pin V_{CC} is charged via start resistor by high voltage DC bus and the circuit starts to work if voltage at V_{CC} is 14.5V. The circuit is powered by start resistor and auxiliary winding for normal operation. The whole control circuit enters undervoltage lockout if V_{CC} is decreased to 6.5V, capacitor connected to pin V_{CC} is charged through start resistor and IC only restarts when V_{CC} =14.5V.

2. Peak current detection

When $V_{DRIVE}=1$, MOSFET is on, the linearly increased primary current is detected by the sense resistor. When this current increases to the threshold value (peak value), the MOSFET is off and the driving voltage $V_{DRIVE}=0$.

There is a burr when MOSFET is on, and MOSFET will be off by error if its voltage is up to the threshold value V_{PK} for the peak current. So the leading edge blanking time $T_{LEB}=0.6\mu$ s is set to avoid this error.

3. Peak current compensation

The detected peak current value will be increased following the input AC voltage due to the off delay. And the output current is deeply affected by the peak current, hence the voltage regulation is worse without peak current compensation.

Peak current compensation is available in SD6854 through pin PCC by AC input voltage detecting. With the compensation, the detected peak current is hold with different input AC voltages for better line regulation.

The threshold value $V_{PK}=0.7V$ is set by the circuit, that is, this value can be adjusted by R_{SEN} . The peak current compensation ability is decided by R_{PCC} , the lower resistance, the higher compensation.

4. Feedback Voltage Detection

When MOSFET is off, the voltage at pin FB is positive and voltage is sensed at 2/3 duration of this positive voltage, this sensed voltage is used for T_{CV} control after compared with V_{CV} , amplified and held. CV is available by T_{CV} controlling.

Without consideration of voltage drop on cable and rectifier diode, the equation is shown as:

$$V_{OUT} \frac{n_{S2}}{n_{S1}} \cdot \frac{R_{F2}}{R_{F1} + R_{F2}} = V_{CV}$$

 T_{OFF1} , T_{OFF2} and T_{ON} are counted at the same time which indicates durations of positive FB voltage, FB damping oscillation and FB negative voltage respectively. Positive FB voltage indicates there is current delivered to the secondary side of transformer, while negative and FB damping oscillation indicate there is no current delivered to the secondary side of transformer.

The duty factor is expressed as:

$$\mathsf{D}_{\mathsf{S}} = \frac{\mathsf{T}_{\mathsf{OFF1}}}{\mathsf{T}_{\mathsf{OFF1}} + \mathsf{T}_{\mathsf{OFF2}} + \mathsf{T}_{\mathsf{ON}}} = \frac{\mathsf{T}_{\mathsf{OFF1}}}{\mathsf{T}}$$

Output current, also the average current in secondary winding:

$$I_{OUT} = \frac{I_{SP} \cdot T_{OFF1}}{2T} = \frac{nD_S}{2}I_{PK};$$

I_{SP}—peak current in secondary winding, I_{PK}—peak current in primary winding, n—turns ratio of primary/secondary windings.

Hence, with constant peak current, when $D_s=D_{smax}=0.57$ (this value is determined by internal circuit), the circuit enters constant-current mode and output current is kept constant.

5. Cable drop compensation

In the actual design, the cable voltage drop $V_{\mbox{\tiny CAB}}$ should be taken into consideration:

 V_D is almost constant with different currents, and cable voltage drop V_{CAB} is proportional to output current, which is needed to be compensated to get better voltage regulation.

For cable compensation, R_{CDC} is used for equivalent cable resistor. And different R_{CDC} is needed for different cable.

6. Over voltage protection

The output is shutdown if voltage at FB exceeds the threshold V_{OVP} and this state is kept for 18ms, then the circuit restarts.

7. Over Temperature Protection

If the circuit is over temperature, the output is shut down to prevent the circuit from damage. The hysteresis of over temperature protection is used to avoid frequently change between normal and protection modes. The over protection threshold value is 140°C and hysteresis value is about 35°C. Hence, the circuit is only normal when the temperature is 105°C below.

8. Open Loop Protection

When MOSFET is on, if V_{FB} >-1V, the loop is open and open loop protection is active to shutdown the output, which keeps for 18ms and then the circuit restarts

9. PFM frequency setting

PFM frequency range is determined by the constant on time T_{ON} and constant-voltage loop off time. When off time is T_{CVmax} , the circuit works with no load and operating frequency value is minimum; when off time is T_{CVmin} , the circuit works with full load and operating frequency value is maximum.

According to the formula:
$$P_O = V_O \cdot I_O = \frac{1}{2} L_m I_{PK}^2 \cdot f_S \cdot \eta$$

Where, Lm—primary inductance, I_{PK} —peak current in primary side, fs—operating frequency, η —efficiency.

Hence, $f_{S} = \frac{2V_{O} \cdot I_{O}}{L_{m}I_{PK}^{2} \cdot \eta}$

TYPICAL APPLICATION CIRCUIT

Note: The circuit and parameters are for reference only; please set the parameters of the real application circuit based on the real test.

PACKAGE OUTLINE

MOS DEVICES OPERATE NOTES:

Electrostatic charges may exist in many things. Please take following preventive measures to prevent effectively the MOS electric circuit as a result of the damage which is caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed in antistatic/conductive containers for transportation.

\mathbf{O}

Disclaimer :

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause loss of body injury or damage to property.
- Silan will supply the best possible product for customers!